Thứ Sáu, 11 tháng 10, 2013

Bài 1: Một tập thể gồm 14 người gồm 6 nam và 8 nữ trong đó có An và Bình , người ta muốn chọn 1 tổ công tác gồm 6 người. Tìm số cách chọn tổ sao cho có 1 tổ trưởng , 5 tổ viên trong đó An và Bình không đồng thời có mặt. KQ: 15048

Bài 2: Cho A là một tậo hợp tập có 20 phần tử.

a)    Có bao nhiêu tập hợp con của A

b)    Có bao nhiêu tập hợp con khác rỗng của A mà có số phần tử là số chẵn

KQ: a) 1048576 b) 524287

Bài 3: Một tập thể gồm 14 người gồm 6 nam và 8 nữ, người ta muốn chọn 1 tổ công tác gồm 6 người.Tìm số cách chọn sao cho trong tổ phải có cả nam và nữ. KQ: 2974

Bài 4: Có bao nhiêu số tự nhiên gồm 4 chữ số sao cho không có chữ số nào lặp lại đúng 3 lần? KQ: 8676

Bài 5: Từ 1 nhóm học sinh gồm 7 nam và 6 nữ. Thầy giáo cần chọn ra 5 em tham dự lể mít tinh tại trường với yêu cầu có cả nam lẫn nữ. Hỏi có bao nhiêu cách chọn. KQ: 1260

Bài 6: Một nhóm gồm 10 học sinh, trong đó 7 nam và 3 nữ. Hỏi có bao nhiêu cách sắp xếp 10 học sinh trên thành 1 hàng dọc sao cho 7 học sinh nam phải đứng liền nhau. KQ: 120960

Bài 7: Có bao nhiêu số tự nhiên có 7 chữ số (chữ số đầu tiên khác 0), biết rằng chữ số 2 có mặt đứng 2 lần, chữ số 3 có mặt đúng 3 lần và các chữ số còn lại có mặt không quá 1 lần. KQ: 11340

Bài 8: Có bao nhiêu số tự nhiên có 6 chữ số đôi 1 khác nhau. (Chữ số đầu tiên phải khác 0), trong đó có mặt chữ số 0, nhưng không có mặt chữ số 1. KQ: 33600

Bài 9: Hỏi từ 9 chữ số 1,2,3,4,5,6,7,8,9 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau sao cho trong chữ số đó có mặt chữ số 1. KQ: 8400

Bài 10: Có 6 học sinh sẽ được sắp xếp vào 6 chỗ đã được ghi số thứ tự trên bàn dài. Tìm số cách sắp xếp 6 học sinh này sao cho hai học sinh A và B không ngồi cạnh nhau. KQ: 480

Bài 11: Có 6 học sinh sẽ được sắp xếp vào 6 chỗ đã được ghi số thứ tự trên bàn dài. Tìm số cách sắp xếp 6 học sinh này ngồi vào bàn. KQ: 720

Bài 12: Có một hộp đựng 2 viên bi đỏ, 3 viên bi trắng, 5 viên bi vàng. Chọn ngẫu nhiên 4 viên bi lấy từ hộp đó. Hỏi có bao nhiêu cách chọn để trong đó số viên bi lấy ra không đủ ba màu. KQ: 105

Bài 13: Cho tập $E = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}$. Hỏi có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau từ  E mà chia hết cho 5? KQ: 5712

Bài 14: Cho tập $E = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}$. Hỏi có bao nhiêu tập con của E chứa chữ số 9 .KQ: 512

Bài 15: Có bao nhiêu số tự nhiên gồm 5 chữ số trong đó có 2 số kề nhau phải khác nhau. KQ: 59049

Bài 16: Xét các số tự nhiên gồm 5 chữ số khác nhau, thành lập từ các chữ số 1,2,3,4,5. Hỏi trong các số đó có bao nhiêu số không bắt đầu bởi 345. KQ: 118

Bài 17: Xét các số tự nhiên gồm 5 chữ số khác nhau, thành lập từ các chữ số 1,2,3,4,5. Hỏi trong các số đó có bao nhiêu số bắt đầu bởi 23 KQ: 6

Bài 18: Xét các số tự nhiên gồm 5 chữ số khác nhau, thành lập từ các chữ số 1,2,3,4,5. Hỏi trong các số đó có bao nhiêu số không bắt đầu bởi chữ số 1 KQ: 96

Bài 19: Xét các số tự nhiên gồm 5 chữ số khác nhau,  thành lập từ các chữ số 1,2,3,4,5. Hỏi trong các số đó có bao nhiêu số bắt đầu bởi chữ số 5. KQ: 24

Bài 20: Từ 7 chữ số 1,2,3,4,5,6,7, có bao nhiêu số gồm 4 chữ số khác nhau và luôn có mặt chữ số 7 và chữ số hàng ngàn là chữ số 1 KQ: 60

Bài 21: Cho 7 chữ số 1,2,3,4,5,6,7 có bao nhiêu số gồm 4 chữ số khác nhau và luôn có mặt chữ số 7 được viết từ các chữ số đã cho. KQ: 480

Bài 22: Cho 7 chữ số 1,2,3,4,5,6,7 có bao nhiêu số gồm 4 chữ số khác nhau được viết từ các chữ số đã cho. KQ: 840

Bài 23: Cho các số 1,2,5,7,8 có bao nhiêu cách lập ra một số gồm 3 chữ số khác nhau từ 5 chữ số trên sao cho số tạo thành là một số nhỏ hơn 278. KQ: 20

Bài 24: Cho các số 1,2,5,7,8 có bao nhiêu cách lập ra một số gồm 3 chữ số khác nhau từ 5 chữ số trên sao cho số tạo thành là một số không có chữ số 7 KQ: 24

Bài 25: Cho các số 1,2,5,7,8 có bao nhiêu cách lập ra một số gồm 3 chữ số khác nhau từ 5 chữ số trên sao cho số tạo thành là 1 số chẵn. KQ: 24

Bài 26: Từ các chữ số 0,1,2,3,4,5,6  ta có thể thành lập bao nhiêu số tự nhiên có 5 chữ số khác nhau và trong đó có chữ số 4. KQ: 1560

Bài 27: Từ các chữ số 1,2,3,4,5  ta có thể thành lập bao nhiêu số tự nhiên gồm 5 chữ số khác nhau. Trong đó có 2 chữ số 1 và 2 không đứng cạnh nhau. KQ: 72

Bài 28: Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số gồm 8 chữ số ,trong đó chữ số 1 có mặt 3 lần còn mỗi số khác có mặt đúng 1 lần. KQ: 5880

Bài 29: Với các chữ số 0,1,2,3,4,5,6  ta có thể thành lập bao nhiêu  số gồm 5 chữ số khác nhau trong đó phải có mặt chữ số 5. KQ: 1560

Bài 30: Với các chữ số 0,1,2,3,4,5 ta có thể thành lập bao nhiêu số chẵn, mỗi số gồm 5 chữ số khác nhau. KQ: 312

Bài 31: Cho các số 1,2,3,4,5,6,7. Tìm các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho các chữ số đều khác nhau. KQ: 2520

Bài 32: Cho các số 1,2,3,4,5,6,7. Tìm các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho không tận cùng là chữ số 4. KQ: 14406

Bài 33: Cho các số 1,2,3,4,5,6,7. Tìm các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên là 3. KQ: 2401

Bài 34: Một lớp học có 20 học sinh, trong đó có 2 cán bộ lớp. Hỏi có bao nhiêu cách cứ 3 người đi dự hội nghị SV của trường sao cho trong 3 người có ít nhất 1 cán bộ lớp? KQ: 324

Bài 35: Một đội văn nghệ có 20 người, trong đó 10 nam, 10 nữ. Hỏi có bao nhiêu cách chọn ra 5 người sao cho.

1.    Có đúng 2 nam trong 5 người đó.

2.    Có ít nhất 2 nam và ít nhất 1 nữ trong 5 người đó.

KQ: 1) 5400                   2) 12900

Bài 36: Với các chữ số 1,2,3,4,5,6. Ta lập các số mà mỗi số có 5 chữ số trong đó các chữ số khác nhau đôi một. Có bao nhiêu số trong đó phải có mặt 2 chữ số 1 và 6. KQ: 480

Bài 37: Với các chữ số 1,2,3,4,5,6. Ta lập các số mà mỗi số có 5 chữ số trong đó các chữ số khác nhau đôi một. Có bao nhiêu số trong đó phải có mặt chữ số 2. KQ: 600

Bài 38: Cho các chữ số 0,1,2,3,4,5. Từ các chữ số ta lập được có bao nhiêu số chia hết cho 9, có 3 chữ số và 3 chữ số đó khác nhau từng đôi một. KQ: 16

Bài 39: Cho các chữ số 0,1,2,3,4,5. Từ các chữ số ta lập được bao nhiêu số chia hết cho 5, có 3 chữ số và 3 chữ số đó khác nhau từng đôi một. KQ: 36

Bài 40: Một lớp học có 30 học sinh nam và 15 học sinh nữ. Có 6 học sinh được chọn ra để lập một tốp ca. Hỏi có bao nhiêu cách chọn khác nhau.

1.    Nếu phải có ít nhất là 2 nữ.

2.    Nếu phải chọn tuỳ ý.

KQ: 1) 5413695                2) $C_{45}^6$

Bài 41: Có 6 học sinh sẽ được sắp xếp ngồi vào 6 chỗ đã được ghi số thứ tự trên 1 bàn dài.

1.    Tìm số cách sắp xếp 6 học sinh này ngồi vào bàn.

2.    Tìm số cách sắp xếp 6 học sinh này ngồi vào bàn sao cho 2 học sinh A và B không ngồi cạnh nhau.

KQ: 1) 720                 2) 480

Bài 42: Một tổ học sinh gồm 7 nam và 4 nữ. Giáo viênmuốn chọn 3 học sinh xếp bàn ghế của lớp, trong đó có ít nhất 1 nam sinh. Hỏi có bao nhiêu cách chọn. KQ: 161

Bài 43: Một hội nghị y khoa có 40 bác sĩ tham dự. Người ta muốn lập một nhóm bác sĩ thực hành một ca phẫu thuật để minh hoạ. Hỏi có bao nhiêu cách lập một nhóm có:

1)    Một bác sĩ chính và 1 phụ tá.

2)    Một bác sĩ chính và 4 phụ tá.

KQ: 1) $A_{40}^2$            2) $40C_{39}^4$

Bài 44: Năm học sinh nam và 3 học sinh nữ được sắp xếp vào 8 chỗ ngồi. Có bao nhiêu cách sắp xếp chỗ ngồi sao cho không có hai học sinh nữ ngồi vào cạnh nhau? KQ: 30960

Bài 45: Xếp 3 quyển sách văn, 4 sách sử, 2 sách địa và 5 quyển công dân vào một hệ thống theo từng môn. Hỏi có bao nhiêu cách sắp xếp. KQ: 829440

Bài 46: Cho đa giác lồi n cạnh. Tìm số giao điểm của các đường chéo. Biết rằng không có 3 đường chéo nào đồng quy. KQ: $C_n^4$

Bài 47: Cho đa giác lồi n cạnh. Tìm số tam giác có đỉnh là đỉnh của n giác. KQ: $C_n^3$

Bài 48: Một lớp học có 40 học sinh gồm 25 nam, 15 nữ. Có baô nhiêu cách chọn 4 học sinh sao cho phải có ít nhất 1 nữ. KQ: 78740

Bài 49: Một lớp học có 40 học sinh gồm 25 nam, 15 nữ. Có baô nhiêu cách chọn 4 học sinh sao cho phải có 2 nam 2 nữ. KQ: 31500

Bài 50: Một nhóm học sinh gồm 10 nam và 6 nữ.Chọn 1 tổ gồm 8 người. Có bao nhiêu cách chọn để được nhiều nhất 5 nữ. KQ: 12825

Bài 51: Trong một môn học,thầy giáo có 30 câu hỏi khác nhau gồm 5 câu hỏi khó,10 câu hỏi trung bình ,15 câu hỏi dễ.Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra,mỗi đề gồm 3 câu hỏi khác nhau,sao cho trong mỗi đề nhất thiết phải có đủ 3 loại câu hỏi (khó,trung bình,dễ) và số câu hỏi dễ không ít hơn 2? KQ: 56875

Bài 52: Cho đa giác đều ${A_1}{A_2}...{A_{2n}}$ nội tiếp đường tròn $\left( {O;R} \right)$. Biết rằng số tam giác có các đỉnh là 3 trong 2n điểm ${A_1}{A_2}...{A_{2n}}$ nhiều gấp 20 lầ số hình chữ nhật có các đỉnh là 4 trong 2n điểm ${A_1}{A_2}...{A_{2n}}$. Tìm n. KQ: n=8

Bài 53: Từ 1 tập thể 8 người gồm 5 nam và 3 nữ , hỏi có  bao nhiêu cách chọn một tổ công tác gồm 4 người thoả điều kiện, trong mỗi trường hợp sau:

1 . Không có điều kiện gì thêm.

2. Tổ chỉ gồm 4 nam

3. Tổ phải gồm 2 nam và 2 nữ.

KQ: 1)70                           2) 5                                    3) 30

Bài 54: Có bao nhiêu số chẵn gồm 6 chữ số đôi 1 khác nhau, đôi một trong đó chữ số đầu tiên là chữ số lẻ. KQ: 42000

Bài 56: Có bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau (chữ số đầu tiên phải khác 0),trong đó có mặt chữ số 0 nhưng không có mặt chữ số 1? KQ: 33600

Bài 57: Một trường tiểu học có 50 học sinh đạt danh hiệu Cháu ngoan Bác Hồ, trong đó có 4 cặp anh em sinh đôi. Cần chọn 1 nhóm 3 học sinh trong số 50 học sinh trên đi dự đại hội Cháu ngoan Bác Hồ sao cho trong nhóm không có cặp anh em sinh đôi nào? Hỏi có bao nhiêu cách chọn. KQ: 19408

Bài 58: Một đội văn nghệ gồm 10 học sinh nam và 10 học sinh nữ. Cô giáo muốn chọn ra 1 tốp ca gồm 5 em, trong đó có ít nhất 2 nữ. Hỏi có bao nhiêu cách chọn. KQ: 13152

Bài 59: Một lớp có 40 học sinh gồm 25 nam và 15 nữ GVCN muốn chọn 4 em vào ban trật tự. Hỏi có bao nhiêu cách chọn nếu phải có ít nhất 1 nam. KQ: 90025

Bài 60: Một lớp học gồm có 40 học sinh, cần cử ra 1 ban cán sự lớp gồm 1 lớp trưởng, 1 lớp phó, 3 uỷ viên. Hỏi có mấy cách lập ra ban cán sự lớp? KQ: 13160160

Bài 61: Từ 5 bông hồng vàng, 3 bông hồng trắng, và 4 bông hồn đỏ (các bông hoa xem như đôi một khác nhau) người ta muốn chọn ra 1 bó hoa gồm 7 bông. Có bao nhiêu cách chọn 1 bó hoa trong đó có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ. KQ: 150

Bài 62: Với các chữ số 1,2,3,4,5 ta có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt đúng 1 lần. KQ: 5880

Bài 63: Cho các số 1,2,5,7,8.Có bao nhiêu các lập ra một số gồm ba chữ số khác nhau từ 5 số trên sao cho số tạo thành là một số không có chữ số 7. KQ: 24

Bài 64: Cho 2 đường thẳng ${d_1},{d_2}$ song song với nhau. Trên đường thẳng ${d_1}$ cho 10 điểm phân biệt, trên đường thẳng ${d_2}$ cho 8 điểm phân biệt. Hỏi có thể lập được bao nhiêu tam giác mà 3 đỉnh của mỗi tam giác lấy từ 18 điểm đã cho. KQ: 640

Bài 65: Một đội thanh niên tình nguyện có 15 người, gồm 12 nam và 3 nữ. Hỏi có bao nhiêu cách phân công đội thanh niên tình nguyện đó về giúp đỡ 3 tình miền núi sao cho mỗi tỉnh có 4 nam và 1 nữ. KQ: 207900

Bài 66: Một thầy giáo có 12 cuốn sách đôi một khác nhau trong đó có 5 cuốn sách văn học, 4 cuống sách âm nhạc và 3 cuốn sách hội họa.Ông muốn lấy ra 6 cuống và đem tặng cho 6 em học sinh A,B,C,D,E,F mỗi em một cuốn.

1. Giả sử thầy giáo chỉ muốn tặng cho các em học sinh trên những cuốn sách thuộc hai thể loại văn học và âm nhạc.Hỏi tất cả có bao nhiêu cách tặng?

2. Giả sử thầy giáo muốn rằng sau khi tặng sách xong,mỗi cuốn trong ba loại văn học,âm nhạc,hội họa còn đều ít nhất một cuốn.Hỏi tất cả có bao nhiêu cách chọn?

KQ: 1) 60480                  2) 579600

Bài 67: Cho tập $A = \left\{ {1;2;3;4;5;6;7;8} \right\}$. Có bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau lấy từ tập A và không bắt đầu bởi 123? KQ: $4A_7^4 - 12$

Bài 68: Một đa giác lồi có n cạnh thì có bao nhiêu đường chéo? KQ: $\frac{{n(n - 3)}}{2}$

Bài 69: Người ta viết số có 6 chữ số bằng các chữ số 1,2,3,4,5 như sau, trong mỗi chữ số được viết có 1 chữ số xuất hiện 2 lần, còn các chữ số còn lại xuất hiện 1 lần. Hỏi có bao nhiêu số như vậy. KQ:1800

Bài 70: Cho 5 chữ số 0,1,2,3,4.Từ 5 chữ số đó có thể lập được bao nhiêu số chẵn có 5 chữ số sao cho trong mỗi số đó , mỗi chữ số trên có mặt đúng 1 lần. KQ: 60

Chú ý: Các KQ ở trên chỉ mang tính chất tham khảo

0 nhận xét:

Đăng nhận xét

- Hãy dùng tiếng Việt có dấu để mọi người dễ đọc hơn!
- Các bạn hãy Mã hóa Code trước khi chèn vào nhận xét
- Chèn link bằng thẻ: <a href="URL liên kết" rel="nofollow">Tên link</a>
- Tạo chữ <b>đậm</b> và <i>Ngiêng</i>
- Hướng dẫn gõ công thức Toán trên blog bằng MathType
Thank you